Compartmentalization of information processing in an aplysia feeding circuit interneuron through membrane properties and synaptic interactions.
نویسندگان
چکیده
We describe a pair of cerebral-to-buccal interneurons, CBI-5/6, which have outputs and inputs in two ganglia. The soma in the cerebral ganglion received synaptic inputs during buccal motor programs (BMPs) and after mechanical stimulation of the lips. During BMPs the soma received antidromic spikes generated in processes in the buccal ganglion. The soma was driven into a plateau potential by each of these inputs, during which it fired orthodromically at 0-5 Hz. The soma had outputs in the cerebral ganglion consisting of electrical coupling to the adjacent CBI-5/6 and to a cerebral-to-pedal neuron (CPN1). The buccal terminals of CBI-5/6 received inputs that generated rhythmic barrages (up to 25 Hz) of antidromic spikes during BMPs. The buccal terminals had chemical and electrical outputs to motor and premotor elements of feeding circuitry. This combination of synaptic interactions and endogenous properties mean that CBI-5/6 can process information in a number of ways. During the barrage of antidromic spikes, high-frequency firing will produce strong inputs to buccal followers and on their arrival at the soma will transfer excitation electrotonically to CPN1. Subthreshold input to the soma will be transferred electrotonically to cerebral followers but will not be relayed to postsynaptic buccal neurons. Plateau potentials after the antidromic spikes or local cerebral inputs will locally excite CPN1 via electrical coupling but will have little influence on buccal events because of the low orthodromic firing rate. Thus, CBI-5/6 may transmit information locally within the cerebral ganglion or more extensively in both buccal and cerebral ganglia simultaneously.
منابع مشابه
The Feeding CPG in Aplysia Directly Controls Two Distinct Outputs of a Compartmentalized Interneuron that Functions as a CPG Element
In the context of motor program generation in Aplysia, we characterize several functional aspects of intraneuronal compartmentalization in an interganglionic interneuron, CBI-5/6. CBI-5/6 was shown previously to have a cerebral compartment (CC) that includes a soma that does not generate full-size action potentials, and a buccal compartment (BC) that does. We find that the synaptic connections ...
متن کاملFeeding CPG in Aplysia directly controls two distinct outputs of a compartmentalized interneuron that functions as a CPG element.
In the context of motor program generation in Aplysia, we characterize several functional aspects of intraneuronal compartmentalization in an interganglionic interneuron, CBI-5/6. CBI-5/6 was shown previously to have a cerebral compartment (CC) that includes a soma that does not generate full-size action potentials and a buccal compartment (BC) that does. We find that the synaptic connections m...
متن کاملPeptidergic contribution to posttetanic potentiation at a central synapse of aplysia.
Posttetanic potentiation (PTP)-like phenomena appear to be mediated by a variety of mechanisms. Although neuropeptides are located in a large number of neurons and many neuropeptides, like PTP, can enhance synaptic transmission, there is a paucity of studies indicating that peptides may actually participate in PTP. Here, we utilize a single central synapse in the feeding circuit of Aplysia to i...
متن کاملInformation processing by nonspiking interneurons: passive and active properties of dendritic membrane determine synaptic integration.
Nonspiking interneurons control activities of postsynaptic cells without generating action potentials in the central nervous system of many invertebrates. Physiological characteristics of their dendritic membrane have been analyzed in previous studies using single electrode current- and voltage-clamp techniques. We constructed a single compartment model of an identified nonspiking interneuron o...
متن کاملActivity-dependent potentiation of recurrent inhibition: a mechanism for dynamic gain control in the siphon withdrawal reflex of Aplysia.
The siphon withdrawal response (SWR) of Aplysia supports several forms of learning that are under both excitatory and inhibitory control. Here we examine the role of interneuronal processing on the regulation of siphon responses, with an emphasis on the role of inhibition. We focus on the recurrent circuit formed by the excitatory interneuron L29 and the inhibitory interneuron L30, and show tha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 18 10 شماره
صفحات -
تاریخ انتشار 1998